
T-106.290 Laboratory Course in Programming:The Signi�
an
e of Data Representation to Performan
eAssistent Ville NenonenMiro Lahdenmäki55089Kmlahdenm�

.hut.fi Tuukka Lehtonen51091Atvlehton�

.hut.fi18th May 2004Abstra
tIn this paper we studied the performan
e of depth-�rst sear
h(DFS) with four di�erent graph implementations. To our surprisein the tests our bit-matrix implementation didn't perform better thanthe integer-matrix implementation even though it needs 32 times lessmemory.Our adja
en
y list implementation where we pla
ed the data asit is
ommon in graph implementations performed well in all
ases,even when the graph data didn't �t to the
a
he. With the other listimplementation there was some degradation in performan
e when thegraph size ex
eeded a multiple of the L2
a
he size.When testing the in�uen
e of graph density the performan
e
urveof the adja
en
y matrix implementations drew a paraboli

urve indi-
ating that performan
e was best with sparse and dense graphs.

1

1 Introdu
tionIn this paper we study the signi�
an
e of data representation to performan
e.We study this by
omparing the e�
ien
y of a basi
 graph algorithm
alleddepth-�rst sear
h on four di�erent data implementations for a dire
ted graph.Ca
hes have an integral e�e
t on how e�
iently we
an utilize the powerof modern pro
essors. This has been a growing trend for many years and islikely to be
ome more important as pro
essor speed surpasses memory speedmore and more. Modern ma
hine ar
hite
tures and
a
hes are e�
ient whendata
an be handled lo
ally so that is one of our primary
on
erns.The reason why we fo
us on a basi
 graph algorithm is that within thelimits of this
ourse we
annot delve into a very extensive study.1.1 Related WorkDirk Grunwald [4℄ et al. pointed out in 1993 that programmers generallydon't put too mu
h thought on memory allo
ators and assume that thememory allo
ators provided by their programming environment are optimal.They demonstrate that poor referen
e lo
ality redu
es program performan
eby in
reasing paging and
a
he miss rates. Ca
he misses are be
oming more
ru
ial as the performan
e of memory relative to pro
essor speed is de
reas-ing all the time. Grunwald et al. show that spa
e-e�
ient algorithms havepoor referen
e lo
ality often hindering performan
e. They suggest a memoryallo
ator design that is fast and has good lo
ality of referen
e.In a previous paper they show that memory allo
ators
ustomized forspe
i�
 appli
ations outperform general allo
ators distributed with widely-used operating systems while being more spa
e e�
ient.In this paper they �nd out that algorithms that sear
h for free spa
efor every allo
ation, su
h as FirstFit and GNU G++, are generally slowerand have poor referen
e lo
ality. Also an allo
ator that has been espe
iallydesigned for good
a
he lo
ality, Gnu Lo
al, doesn't have signi�
antly lower
a
he miss rates than BSD or Qui
kFit algorithms. These two algorithmsallow very rapid allo
ation and deallo
ation and at the same time promoterapid obje
t re-use thus leading to higher referen
e lo
ality.Bla
k [1℄ et al. show that array-based lists are mu
h faster than linked listimplementations for sequential a

ess. They a

entuate that it is importantto understand whi
h variables
an a�e
t results. They point out that manypapers on algorithms
on
entrate on higher level implementations and failto take note of the
a
he
hara
teristi
s of the ma
hines used. Their studiesshow that for dense graphs an adja
en
y matrix using a bit-ve
tor is theuniversal winner, while for sparse graphs an array-based adja
en
y list is2

best. They suggest that the best data stru
ture depends largely on graphsize and average node degree but that it doesn't depend on graph topology.Chilimbi [2℄ et al. elevate that there are three general data pla
ementdesigns that
an be used to produ
e
a
he-
ons
ious data stru
tures. Theyare
lustering,
oloring and
ompression.Clustering attempts to pa
k data stru
ture elements likely tobe a

essed
ontemporaneously into a
a
he blo
k. - - Color-ing segragates heavily and infrequently a

essed elements in non-
on�i
ting
a
he regions. - - Compression redu
es stru
ture sizeor separates the a
tive portion of stru
ture elements.Chilimbi presents a
a
he-
ons
ious memory allo
ator

mallo
 thatattempts to
o-lo
ate
ontemporaneously a

essed data elements in the same
a
he blo
k. It performs lo
al
lustering quite e�
iently and is safe in thatit a�e
ts only program performan
e.

mallo
 di�ers from mallo
 in thatit takes an additional parameter that points to an existing data stru
tureelement likely to be a

essed
ontemporaneously with the element to be al-lo
ated. It is also quite easily utilizable.Chilimbi also presents a
omplementary approa
h to
a
he-
ons
ious allo-
ation, to reorganize a stru
ture's memory layout to
orrespond to its a

esspattern. For this he presents a
a
he-
ons
ious tree reorganizer

morphthat applies
lustering and
oloring te
hniques. Tseng [7℄ extends

morphto
luster a
y
li
 graphs (DAGs) as well as trees. But we are experimentingwith graphs that
an be
y
li
.Tseng [7℄ also addresses the issue of
a
he performan
e with regard to datalo
ality. In addition he stresses the need for both
ompile-time and run-timedata lo
ality optimizations. Both of these optimizations are of
ru
ial im-portan
e when attempting to make high performan
e programming availableto non-expert programmers. Although experiments have shown
ompile-time optimizations to improve performan
e, sometimes even dramati
ally,he presents three
ases where
ompile-time optimizations are insu�
ient andgives optimization te
hniques for ea
h of these
ases.Two basi
 representations of dire
ted graphs are used in our experiments:adja
en
y-list and adja
en
y-matrix. Both of these
an be implemented inseveral ways with regard to the data layout. In addition to these [3℄ presentsthe elementary depth-�rst sear
h (DFS) algorithm whi
h is under exprimen-tation in this paper. Ca
he-
ons
ious allo
ation is a te
hnique of parti
ularinterest in this �eld of experiments sin
e it addresses
a
hing problems inpointer based data stru
tures, su
h as adja
en
y-list based graph represen-tations. 3

In the following
hapters we will dis
uss our experiment design and presentthe results and analysis of our experimentations. Experiment design
oversthe tested algorithm, dis
usses our input data
onsiderations, testing fa
torsand test run des
riptions. The design is
on
luded with rough des
riptionsof the results to be shown. Experimentations are presented along with theresulting graphs and numeri
 data.2 Experiment Design2.1 Brief des
ription of the algorithmWe use the basi
 depth-�rst sear
h algorithm as it is des
ribed in Introdu
tionto Algorithms [3℄.As implied by its name, depth-�rst sear
h seeks deeper in the graph when-ever possible. Edges are explored from the most re
ently dis
overed vertexthat still has unexplored edges leaving from it. When all the edges leavingfrom it have been explored, the sear
h ba
ktra
ks to explore edges leavingfrom the vertex from whi
h it was dis
overed. This pro
ess
ontinues until allthe verti
es that are rea
hable from the original sour
e vertex are dis
overed.If there are still undis
overed verti
es, then one of them is sele
ted as a newsour
e. Depth-�rst sear
h is ready when all the verti
es are dis
overed.Verti
es are
olored during the sear
h to indi
ate their state. Ea
h vertexis initially white. When a vertex is dis
overed it is grayed and when itsadja
en
y list has been examined
ompletely it is bla
kened. This guaranteesthat ea
h vertex ends up in just one depth-�rst tree.Ea
h vertex is also timestamped twi
e, when the vertex is �rst dis
ov-ered and when the sear
h �nishes on the vertex. The timestamps are integersbetween 1 and 2jV j, where jV j is the number of verti
es.2.2 Brief des
ription of the te
hnologyThe two standard ways to represent a graph are as a
olle
tion of adja
en
ylists or as an adja
en
y matrix.The adja
en
y-list representation of a graph G = (V;E)
on-sists of an array Adj of jV j lists, one for ea
h vertex in V . Forea
h u 2 V , the adja
en
y list Adj[u℄
ontains (pointers to) allthe verti
es v su
h that there is an edge (u; v) 2 E.For the adja
en
y-matrix representation of a graph G =(V;E), we assume that verti
es are numbered 1; 2; : : : ; jV j in4

some arbitrary manner. The adja
en
y-matrix representation ofa graph G then
onsists of a jV j x jV j matrix A = (aij) su
h thataij = � 1 if (i; j) 2 E0 otherwise.2.3 Des
ription of input dataWe will
reate the input data with Knuth's Stanford GraphBase [5℄ (SGB).With it we
an easily generate random graphs with few parameters. We willtest di�erent sized graphs with varying density.Bla
k et al. [1℄ point out that the adja
en
y-matrix representation is moste�
ient for dense graphs where as an array based adja
en
y-list representa-tion is more e�
ient for sparse graphs. They observed no parti
ular e�e
tby varying the graph topology. We will perform some tests to see if this istrue for our
ase also.We will pla
e the graphs generated with SGB to our own simpli�ed datastru
tures.The generated graph data will be tested on two di�erent general data rep-resentations: an array based adja
en
y-list representation and an adja
en
y-matrix representation. The matrix representations will be referred to asadjmat and adjbitmat, for adja
en
y integer-matrix and adja
en
y bit-matrixrepresentations. In the adja
en
y-list representation we will test two di�er-ent data pla
ement s
hemes. In the �rst s
heme (adjlist1) we treat a vertexand its outgoing edges (vertex pointers) as a variable sized su

essive mem-ory blo
k. Su
h blo
ks are pla
ed
onse
utively in a single allo
ated blo
kof memory big enough for the whole graph. In the se
ond s
heme (adjlist2)we will use a di�erent data layout and separate the array of graph verti
esfrom the edge lists of ea
h vertex. Thus ea
h vertex will be
onstant sizedand
ontain a pointer to its list of edges. Figures 1 and 2
larify these mem-ory layouts. Although somewhat syntheti
, adjlist2 is
loser to the
ommonadja
en
y-list representation than adjlist1.2.4 List of parametersSGB gives us the possibility to vary the following parameters in graph gen-eration:� Verti
es� Edges� Multi 5

#0 next #0 data #0 adj 1 #0 adj 2 #0 adj 3 #1 next #1 data #1 adj 1

#2 next #2 data #2 adj 1 #2 adj 2

base_address:

base_address+32:

base_address+64:

#3 next #3 data #3 adj 1 #3 adj 2

#3 adj 3

#n = vertex number n next = offset from base_address to next vertex

data = data related to a vertex (here an integer)

adj n = offset from base_address to the nth adjacent vertexFigure 1: adjlist1 memory layout
#1 data

#2 data

base_address:

#3 data

#1 arcs

#2 arcs

#3 arcs

...

base_address+8*V: #1 adj 1 #1 adj 2 #1 adj 3 #2 adj 1

base_address+8:

base_address+12:

#3 adj 1 #3 adj 2

#n = vertex number n

arcs = pointer to an array of adjacent vertex pointers

data = data related to a vertex (here an integer)

adj n = pointer to the nth adjacent vertex

V = number of vertices in graph

Figure 2: adjlist2 memory layout� Self� Dire
ted� Distan
e from� Distan
e to� Min length� Max length� SeedFrom these parameters we
hoose only verti
es and edges as fa
tors tokeep the amount of testing manageable. Multiple edges between two verti
esor edges leading ba
k to the same vertex don't make any di�eren
e in DFS6

so we don't allow them. Also we are studying dire
ted weightless graphs sowe don't need any length parameters. We will also keep the seed
onstant.Verti
es and edges de�ne the size and density of the graph. We will studythe e�
ien
y e�e
ts of size and density separately on our four test
ases.We will vary the number of verti
es from 30 to 3500 and the edge densityfrom 5% to 95%.With the distan
e from and distan
e to parameters we
an a�e
t theprobability of in
oming and outgoing edges at ea
h vertex and thus
ause
lustering in the graph. Without this parameter a uniform graph will begiven. We
hose not to vary these parameters and use the uniform edgedistribution.With the seed parameter provided by SGB we
an
ontrol the randomseed by whi
h the graph is generated in a system independent fashion. Soby giving the same set of parameters we
an generate the same graph ondi�erent platforms.2.5 EnvironmentsWe performed our tests on 2.4 GHz Intel Pentium 4 ma
hines with 533 and800 MHz FSB. The P4 ma
hines have 8 KB L1 data
a
he and 512 KB L2
a
he. Both run Linux as their operating system.We used the GNU C/C++
ompiler suite for
ompiling our test programs.All tests were
ompiled with full optimizations.2.6 Des
ription of the test runsWe found out that SGB
an be very slow in generating espe
ially dense graphsand
an take thousands of times longer than exe
uting a DFS sample runon the �nished graph itself. So we de
ided to optimize the pro
edure. Firstwe
reate the graphs with SGB for the test
ases with prede�ned parametersand save the graphs to disk. The graphs are then
onverted into all of ourgraph representations and they are in turn saved to the disk for later use.Time is measured with the
lo
k()-fun
tion provided by the operatingsystem whi
h measures pro
ess time. The time for one depth �rst sear
h
anbe so small that it's impossible to measure it a

urately using
lo
k(). Forthis reason we have to run DFS several times for one sample. We
ontrol thiswith the -r parameter whi
h stands for runs-per-sample. There
an also be adi�eren
e of 4 orders of magnitude in the running time of the samples in ourplanned graphs. For this reason we have to
hange the runs-per-sample valueeven among samples that go to the same graph. We tried to keep the timeit takes to run one sample in the s
ale of se
onds but less than 10 se
onds to7

keep the time required to run all the tests humane. As the runs-per-samplevalue varies inside a graph we have to s
ale the result times a

ording to theruns-per-sample value.In our tests we vary the graph size (number of verti
es) and its density(edges per verti
es squared). We run ea
h test sample �fty times and
ontrolwith the runs-per-sample that ea
h sample takes more than a se
ond. Asthe
lo
k()-fun
tion will over�ow approximately every 72 minutes we
he
kwith ea
h sample if that has happened and run the sample again if it has.After a sample run we dis
ard the obviously erroneous values based on howmu
h they di�er from the median of the samples. These samples are rerun.This may happen when some other program interferes too mu
h
ausing extra
a
he misses. We plot the average value of the samples in a graph and writedown several key �gures in
luding the mean, varian
e, standard error and
on�den
e interval.We study the in�uen
e of graph size using ten di�erent sizes rangingfrom 30 to 3500 verti
es on three di�erent densities 5%, 40% and 75%. Westudy the e�e
t of density using ten di�erent values from 5% to 95% onthree di�erent graph sizes 50, 400 and 750. The slowness of generating densegraphs with SGB is one of the fa
tors that limits our graph sizes.2.7 ResultsWe use three graphs to show the e�e
t of graph size, one for ea
h testeddensity. Ea
h graph has 10 result values per implementation.Similarly we use three graphs to show the e�e
t of graph density, one forea
h tested size. Ea
h graph has 10 result values per implementation.We take 50 samples of ea
h fa
tor
ombination. The statisti
al signif-i
an
e of the results is ensured by testing that the
on�den
e interval ofea
h result falls within �2:5% of the mean value. Samples that are
learlyerroneous are dis
arded automati
ally during testing. Samples that di�ermore than 20 % from the sample median at any time during a test run aredis
arded sin
e they have been disturbed by other pro
esses.3 Experiments3.1 Varying Graph SizeIn this experiment we experimented how graph size a�e
ts the performan
eof DFS. We did the experiments with three graph densities (d) 5%, 40% and75%. The number of verti
es was linearly raised from 50 to 3500 verti
es in8

the �rst �gure and from 50 to 1000 in the last two �gures. The number ofedges
an be
ounted from equation (1).jEj = djV j2 (1)The results are shown in �gures 3, 4 and 5 with ea
h having a
onstantdensity while in
reasing the number of verti
es.The
omputational
omplexity of the DFS algorithm follows from thegraph implementation. Adja
en
y matrix implementations have jV j2
om-plexity and adja
en
y list implementations have jV jjEj
omplexity.After this we will refer to the di�erent tested implementations as follows:� adjmat = adja
en
y integer-matrix� adjbitmat = adja
en
y bit-matrix� adjlist1 = adja
en
y list implementation 1� adjlist2 = adja
en
y list implementation 2In Figure 1 adjlist2 performs best and its performan
e is almost linear.Adjlist1 performan
e follows
losely with adjlist2 performan
e but starts tolag behind on 1500 verti
es and from just over 3000 verti
es on its perfor-man
e lags behind some more when
ompared to adjlist2. With 3500 verti
esadjlist1 's performan
e is about a third from adjlist2.The performan
e of adjmat and adjbitmat lags behind mu
h qui
ker thanadjlist1 when
ompered to the adjlist2 performan
e. Their performan
e
urve resembles a parabola. Adjbitmat performs a little better than adjmat.With 2700 verti
es their performan
e is about a tenth of adjlist1 performan
eas well as with 3500 verti
es.In Figure 2 adjlist2 performs best but takes a slight not
h at about 500verti
es. Adjlist1 performan
e starts to lag behind at about 350 verti
es andends up at 2/3 performan
e with 1000 verti
es. The performan
e of adjmatand adjbitmat are very
lose to ea
h other and are left behind in performan
eending up in 1/4 of the performan
e of adjlist2. Adjmat wins the ra
e withadjbitmat by a very small margin.In Figure 3 adjlist2 performs best on
e again with near linear perfor-man
e. It takes a not
h at about 350 verti
es. Adjlist1 starts to leavebehind at 250 verti
es and takes a hit at 600 verti
es. It ends up last in thisra
e with 1/3 of adjlist2 performan
e.Adjmat and adjbitmat perform similarly following a parabola. They over-
ome adjlist1 at 500 verti
es and end up with 2/5 of adjlist2 performan
e.9

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 500 1000 1500 2000 2500 3000 3500

D
FS

 ti
m

e
(s

ec
on

ds
)

Number of Vertices

Graph density 5%

Adjacency integer−matrix
Adjacency bit−matrix
Adjacency list (impl. 1)
Adjacency list (impl. 2)

Figure 3: Size test - 5% density

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

D
FS

 ti
m

e
(s

ec
on

ds
)

Number of Vertices

Graph density 40%

Adjacency integer−matrix
Adjacency bit−matrix
Adjacency list (impl. 1)
Adjacency list (impl. 2)

Figure 4: Size test - 40% density
10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700 800 900 1000

D
FS

 ti
m

e
(s

ec
on

ds
)

Number of Vertices

Graph density 75%

Adjacency integer−matrix
Adjacency bit−matrix
Adjacency list (impl. 1)
Adjacency list (impl. 2)

Figure 5: Size test - 75% density3.2 Varying Graph DensityIn this experiment the purpose was to see how graph density, i.e. how manyedges are there per vertex, a�e
ts performan
e on di�erent graph layouts andto
ompare the di�erent layouts agains ea
h other in a meaningful way.Fa
tor
ombinations:Number of verti
es: jV j = 50; 400; 750Density: d = 0:05 + 0:1N , where 0 � N � 9.The number of edges
an be
al
ulated by equation (1).The
omputational
omplexity is the same as in se
tion 3.1.The results are shown in �gures 6, 7 and 8 with ea
h having a
onstantnumber of verti
es with in
reasing density.All adja
en
y matrix traversals seem to follow the same pattern of adownward opening parabola where the worst performan
e appears to be atapproximately d = 0:5. Both adjmat and adjbitmat follow the same patternbut adjbitmat
onstantly lags a little behind adjmat.11

On the other hand, adja
en
y list traversals show di�erent behaviour.Just as in the tests in se
tion 3.1, adjlist1 starts showing bad performan
e in
omparison to adjlist2 as we in
rease |V|. It even starts losing to the matriximplementations at d = 0:8 when jV j = 400 and at d = 0:7 when jV j = 750.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
FS

 ti
m

e
(s

ec
on

ds
)

Graph density (%)

Graph size 50 vertices

Adjacency integer−matrix
Adjacency bit−matrix
Adjacency list (impl. 1)
Adjacency list (impl. 2)

Figure 6: Density test - 50 verti
es

12

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
FS

 ti
m

e
(s

ec
on

ds
)

Graph density (%)

Graph size 400 vertices

Adjacency integer−matrix
Adjacency bit−matrix
Adjacency list (impl. 1)
Adjacency list (impl. 2)

Figure 7: Density test - 400 verti
es

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
FS

 ti
m

e
(s

ec
on

ds
)

Graph density (%)

Graph size 750 vertices

Adjacency integer−matrix
Adjacency bit−matrix
Adjacency list (impl. 1)
Adjacency list (impl. 2)

Figure 8: Density test - 750 verti
es
13

4 Analysis4.1 Varying Graph SizeIn general, there were no huge surprises here although there are some puzzlingresults.First of all the performan
e of adjmat doesn't sho
k in any way. It prettymu
h follows the paraboli
 trend it should be following based on it's
om-plexity in ea
h of the three graph density
ases. On the other hand, theperforman
e of adjbitmat was both a disappointment and a surprise basedon the results by Bla
k et al. [1℄ although they tested breadth-�rst-sear
h(BFS) instead of DFS. Our non-optimized implementation may a�e
t this,but another point of view is that, sin
e we do not perform any �payload op-erations� during traversal that we probably in real life would, the resultinginner loop is a tight one. Therefore it would seem that the bit level
al
u-lations done in the adjbitmap are just enough to make the
ode generallyslower than the adjmat
ase. Even huge di�eren
es in the amount of mem-ory needed on large graph sizes (10000 verti
es) 382 MB vs. 12 MB) don'tseem to turn the tables as one might expe
t. One thing to note here is thatin most
ases DFS jumps around a lot in memory, and doesn't pro
ess mu
hsu

essive memory in a row. This raises the probability that earlier loaded
a
he lines get trashed while traversing the subgraph.In �gure 1 we
an see how adjlist1 takes a slight performan
e hit whenthe graph no longer �ts in L2
a
he (1500 verti
es) and another when thegraph is twi
e the L2
a
he size (3500 verti
es).In �gure 2 we
an see adjlist1 and adjlist2 take a slight performan
e hitwhen the graph is greater than half the L2
a
he size (450 verti
es).In �gure 3 we
an see adjlist1 take a slight performan
e hit when thegraph is greater than half the L2
a
he size (350 verti
es). It takes anotherwhen the graph is greater that L2
a
he size (450 verti
es) and
ontinues toperform worse and worse.4.2 Varying Graph DensityAll of the graph density varying tests show the same
ommon behaviour inthe matrix-based tests. Both with very sparse and very dense graphs perfor-man
e is mu
h higher than with medium density graphs. This would seemto be
aused by the general patterns of traversal in the adja
en
y matrix. To
larify, take the two extreme examples: a fully dis
onne
ted graph (0% den-sity) and a fully
onne
ted graph (100% density). Considering how the DFSalgorithm traverses these adja
en
y matri
es in memory, it
an be seen that14

in the fully dis
onne
ted
ase, the matrix is just s
anned through linearlythus exploiting maximum data lo
ality and avoiding bad
a
he e�e
ts. Inthe fully
onne
ted
ase the graph verti
es are visited in linear order, hen
ememory is again s
anned in a very linear fashion. On the other hand, in themedium density
ases, traversal is likely to be more random in memory andtherefore likely to take more time. This reasoning is very mu
h supported by�gures 6, 7 and 8. Just as in size testing, adjbitmat
onstantly shows worseperforman
e than adjmat.The adjlist1 and adjlist2
ases show that the two di�erent layouts performalmost equally up until the graph size draws near to and ex
eeds the L2
a
hesize. After that adjlist1 exe
ution time starts growing 3�4 times as fast asadjlist2. We used Valgrind [6℄ and its plugin Ca
hegrind to see how the
a
hehiear
hy rea
ts to the adja
en
y-list tests. Simple Valgrind runs suggestedthat the adjlist1
ase
auses 10-30% more L1 data
a
he misses than adjlist2.5 SummaryWhat we did was test four di�erent graph implementations to experimenttheir e�e
t on DFS e�
ien
y. We had two adja
en
y matrix implementa-tions and two adja
en
y list implementations. To our surprise our adja
en
ybit-matrix implementation didn't perform better than the integer-matrix im-plementation even though it �t in a fra
tion of the memory needed by theinteger-matrix implementation.We experimented with a
ommon adja
en
y list implementation adjlist2where verti
es and edges are pla
ed apart. It performed very well on all test
ases and demonstrates how mu
h data presentation and data pla
ement
anin�uen
e e�
ien
y.Our other adja
en
y list implementation adjlist1 in whi
h verti
es andedges are alongside su�ered somewhat when the graph data didn't �t in L2
a
he and on bigger and denser graphs it was left behind by the adja
en
ymatrix implementations.When we tested the in�uen
e of graph density the performan
e of theadja
en
y matrix implementations was best with sparse and again with densegraphs.What left us
urious was the poor performan
e of the adja
en
y bit-matrix and for future resear
h it would be interesting to try to make itperform better. Another point of interest would be to test the implementa-tions with di�erent payloads. Also it might be interesting to draw the graphsusing the memory needed for the graph as the x-axis.15

Referen
es[1℄ J. Bla
k, C. Martel, and H. Qi. Graph and hashing algo-rithms for modern ar
hite
tures: design and performan
e, 1998.http://
iteseer.nj.ne
.
om/bla
k98graph.html.[2℄ T. M. Chilimbi, M. D. Hill, and J. R. Larus. Making pointer-based data stru
tures
a
he
ons
ious. Computer, 33(12):67�75, 2000.http://
iteseer.nj.ne
.
om/
hilimbi00making.html.[3℄ T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introdu
tion to Algo-rithms. MIT Press, Cambridge, MA, 1990.[4℄ D. Grunwald, B. G. Zorn, and R. Henderson. Improving the
a
helo
ality of memory allo
ation. In SIGPLAN Conferen
e on Pro-gramming Language Design and Implementation, pages 177�186, 1993.http://
iteseer.nj.ne
.
om/grunwald93improving.html.[5℄ D. E. Knuth. The Stanford GraphBase: A Platform for CombinatorialComputing. 1993. [From the publisher℄: . . . represents Knuth's �nalpreparation for Volume 4 of The Art of Computer Programming. Throughthe use of about 30 examples, the book demonstrates the art of literateprogramming. Ea
h example is a programmati
 essay, a short story that
an be read by human beings, as well as read and interpreted by ma-
hines. In these essays/programs, Knuth makes new
ontributions to theexposition of several important algorithms and data stru
tures.[6℄ J. Seward. Valgrind, a gpl'd system for debugging and pro�ling x86-linuxprograms, 2002-2004. http://valgrind.kde.org.[7℄ C.-W. Tseng. Software support for improv-ing lo
ality in advan
ed s
ienti�

odes, 2000.http://
iteseer.nj.ne
.
om/arti
le/tseng00software.html.

16

