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Abstract

In this paper we studied the performance of depth-first search
(DFS) with four different graph implementations. To our surprise
in the tests our bit-matrix implementation didn’t perform better than
the integer-matrix implementation even though it needs 32 times less
memory.

Our adjacency list implementation where we placed the data as
it is common in graph implementations performed well in all cases,
even when the graph data didn’t fit to the cache. With the other list
implementation there was some degradation in performance when the
graph size exceeded a multiple of the L2 cache size.

When testing the influence of graph density the performance curve
of the adjacency matrix implementations drew a parabolic curve indi-
cating that performance was best with sparse and dense graphs.



1 Introduction

In this paper we study the significance of data representation to performance.
We study this by comparing the efficiency of a basic graph algorithm called
depth-first search on four different data implementations for a directed graph.

Caches have an integral effect on how efficiently we can utilize the power
of modern processors. This has been a growing trend for many years and is
likely to become more important as processor speed surpasses memory speed
more and more. Modern machine architectures and caches are efficient when
data can be handled locally so that is one of our primary concerns.

The reason why we focus on a basic graph algorithm is that within the
limits of this course we cannot delve into a very extensive study.

1.1 Related Work

Dirk Grunwald [4] et al. pointed out in 1993 that programmers generally
don’t put too much thought on memory allocators and assume that the
memory allocators provided by their programming environment are optimal.
They demonstrate that poor reference locality reduces program performance
by increasing paging and cache miss rates. Cache misses are becoming more
crucial as the performance of memory relative to processor speed is decreas-
ing all the time. Grunwald et al. show that space-efficient algorithms have
poor reference locality often hindering performance. They suggest a memory
allocator design that is fast and has good locality of reference.

In a previous paper they show that memory allocators customized for
specific applications outperform general allocators distributed with widely-
used operating systems while being more space efficient.

In this paper they find out that algorithms that search for free space
for every allocation, such as FirstFit and GNU G++, are generally slower
and have poor reference locality. Also an allocator that has been especially
designed for good cache locality, Gnu Local, doesn’t have significantly lower
cache miss rates than BSD or QuickFit algorithms. These two algorithms
allow very rapid allocation and deallocation and at the same time promote
rapid object re-use thus leading to higher reference locality.

Black [1] et al. show that array-based lists are much faster than linked list
implementations for sequential access. They accentuate that it is important
to understand which variables can affect results. They point out that many
papers on algorithms concentrate on higher level implementations and fail
to take note of the cache characteristics of the machines used. Their studies
show that for dense graphs an adjacency matrix using a bit-vector is the
universal winner, while for sparse graphs an array-based adjacency list is



best. They suggest that the best data structure depends largely on graph
size and average node degree but that it doesn’t depend on graph topology.

Chilimbi [2] et al. elevate that there are three general data placement
designs that can be used to produce cache-conscious data structures. They
are clustering, coloring and compression.

Clustering attempts to pack data structure elements likely to
be accessed contemporaneously into a cache block. - - Color-
ing segragates heavily and infrequently accessed elements in non-
conflicting cache regions. - - Compression reduces structure size
or separates the active portion of structure elements.

Chilimbi presents a cache-conscious memory allocator CCMALLOC that
attempts to co-locate contemporaneously accessed data elements in the same
cache block. It performs local clustering quite efficiently and is safe in that
it affects only program performance. CCMALLOC differs from malloc in that
it takes an additional parameter that points to an existing data structure
element likely to be accessed contemporaneously with the element to be al-
located. It is also quite easily utilizable.

Chilimbi also presents a complementary approach to cache-conscious allo-
cation, to reorganize a structure’s memory layout to correspond to its access
pattern. For this he presents a cache-conscious tree reorganizer CCMORPH
that applies clustering and coloring techniques. Tseng [7| extends CCMORPH
to cluster acyclic graphs (DAGs) as well as trees. But we are experimenting
with graphs that can be cyclic.

Tseng |7] also addresses the issue of cache performance with regard to data
locality. In addition he stresses the need for both compile-time and run-time
data locality optimizations. Both of these optimizations are of crucial im-
portance when attempting to make high performance programming available
to non-expert programmers. Although experiments have shown compile-
time optimizations to improve performance, sometimes even dramatically,
he presents three cases where compile-time optimizations are insufficient and
gives optimization techniques for each of these cases.

Two basic representations of directed graphs are used in our experiments:
adjacency-list and adjacency-matrix. Both of these can be implemented in
several ways with regard to the data layout. In addition to these [3] presents
the elementary depth-first search (DFS) algorithm which is under exprimen-
tation in this paper. Cache-conscious allocation is a technique of particular
interest in this field of experiments since it addresses caching problems in
pointer based data structures, such as adjacency-list based graph represen-
tations.



In the following chapters we will discuss our experiment design and present
the results and analysis of our experimentations. Experiment design covers
the tested algorithm, discusses our input data considerations, testing factors
and test run descriptions. The design is concluded with rough descriptions
of the results to be shown. Experimentations are presented along with the
resulting graphs and numeric data.

2 Experiment Design

2.1 Brief description of the algorithm

We use the basic depth-first search algorithm as it is described in Introduction
to Algorithms |3].

As implied by its name, depth-first search seeks deeper in the graph when-
ever possible. Edges are explored from the most recently discovered vertex
that still has unexplored edges leaving from it. When all the edges leaving
from it have been explored, the search backtracks to explore edges leaving
from the vertex from which it was discovered. This process continues until all
the vertices that are reachable from the original source vertex are discovered.
If there are still undiscovered vertices, then one of them is selected as a new
source. Depth-first search is ready when all the vertices are discovered.

Vertices are colored during the search to indicate their state. Each vertex
is initially white. When a vertex is discovered it is grayed and when its
adjacency list has been examined completely it is blackened. This guarantees
that each vertex ends up in just one depth-first tree.

Each vertex is also timestamped twice, when the vertex is first discov-
ered and when the search finishes on the vertex. The timestamps are integers
between 1 and 2|V|, where |V| is the number of vertices.

2.2 Brief description of the technology

The two standard ways to represent a graph are as a collection of adjacency
lists or as an adjacency matrix.

The adjacency-list representation of a graph G = (V, E) con-
sists of an array Adj of |V] lists, one for each vertex in V. For
each u € V| the adjacency list Adj[u] contains (pointers to) all
the vertices v such that there is an edge (u,v) € E.

For the adjacency-matrix representation of a graph G =
(V,E), we assume that vertices are numbered 1,2,...,|V] in
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some arbitrary manner. The adjacency-matrix representation of

a graph G then consists of a [V| x |V| matrix A = (a;;) such that
_{1 if (i,j) e £

aij =

0 otherwise.

2.3 Description of input data

We will create the input data with Knuth’s Stanford GraphBase [5] (SGB).
With it we can easily generate random graphs with few parameters. We will
test different sized graphs with varying density.

Black et al. |[1| point out that the adjacency-matrix representation is most
efficient for dense graphs where as an array based adjacency-list representa-
tion is more efficient for sparse graphs. They observed no particular effect
by varying the graph topology. We will perform some tests to see if this is
true for our case also.

We will place the graphs generated with SGB to our own simplified data
structures.

The generated graph data will be tested on two different general data rep-
resentations: an array based adjacency-list representation and an adjacency-
matrix representation. The matrix representations will be referred to as
adjmat and adjbitmat, for adjacency integer-matriz and adjacency bit-matrix
representations. In the adjacency-list representation we will test two differ-
ent data placement schemes. In the first scheme (adjlist1) we treat a vertex
and its outgoing edges (vertex pointers) as a variable sized successive mem-
ory block. Such blocks are placed consecutively in a single allocated block
of memory big enough for the whole graph. In the second scheme (adjlist2)
we will use a different data layout and separate the array of graph vertices
from the edge lists of each vertex. Thus each vertex will be constant sized
and contain a pointer to its list of edges. Figures 1 and 2 clarify these mem-
ory layouts. Although somewhat synthetic, adjlist2 is closer to the common
adjacency-list representation than adjlisti.

2.4 List of parameters

SGB gives us the possibility to vary the following parameters in graph gen-
eration:

e Vertices
e Edges

e Multi



—

base_address: #0 next #0 data #0 adj 1 #0 adj 2 #0adj 3 #1 next #1 data #ladj1

base_address+32:

#2 next #2 data #2 adj 1 #2 adj 2 #3 next #3 data #3adj 1 #3 adj 2
base_address+64: #3 adj 3
#n = vertex number n next = offset from base_address to next vertex

data = data related to a vertex (here an integer)

adj n = offset from base_address to the nth adjacent vertex

Figure 1: adjlist1 memory layout

base_address: #1 arcs #1 data #n = vertex number n
base_address+8: #2 arcs #2 data arcs = pointer to an array of adjacent vertex pointers
data = data related to a vertex (here an integer)
base_address+12: #3 arcs 43 data adj n = pointer to the nth adjacent vertex
V = number of vertices in graph
base_address+8*V: #1 adj 1 #1 adj 2 #1 adj 3 #2 adj 1 #3 adj 1 #3 adj 2

Figure 2: adjlist2 memory layout

o Self

e Directed

e Distance from
e Distance to

e Min length

e Max length

e Seed

From these parameters we choose only vertices and edges as factors to
keep the amount of testing manageable. Multiple edges between two vertices
or edges leading back to the same vertex don’t make any difference in DFS



so we don’t allow them. Also we are studying directed weightless graphs so
we don’t need any length parameters. We will also keep the seed constant.

Vertices and edges define the size and density of the graph. We will study
the efficiency effects of size and density separately on our four test cases.

We will vary the number of vertices from 30 to 3500 and the edge density
from 5% to 95%.

With the distance from and distance to parameters we can affect the
probability of incoming and outgoing edges at each vertex and thus cause
clustering in the graph. Without this parameter a uniform graph will be
given. We chose not to vary these parameters and use the uniform edge
distribution.

With the seed parameter provided by SGB we can control the random
seed by which the graph is generated in a system independent fashion. So
by giving the same set of parameters we can generate the same graph on
different platforms.

2.5 Environments

We performed our tests on 2.4 GHz Intel Pentium 4 machines with 533 and
800 MHz FSB. The P4 machines have 8 KB L1 data cache and 512 KB L2
cache. Both run Linux as their operating system.

We used the GNU C/C-++ compiler suite for compiling our test programs.
All tests were compiled with full optimizations.

2.6 Description of the test runs

We found out that SGB can be very slow in generating especially dense graphs
and can take thousands of times longer than executing a DFS sample run
on the finished graph itself. So we decided to optimize the procedure. First
we create the graphs with SGB for the test cases with predefined parameters
and save the graphs to disk. The graphs are then converted into all of our
graph representations and they are in turn saved to the disk for later use.
Time is measured with the clock()-function provided by the operating
system which measures process time. The time for one depth first search can
be so small that it’s impossible to measure it accurately using clock(). For
this reason we have to run DFS several times for one sample. We control this
with the -r parameter which stands for runs-per-sample. There can also be a
difference of 4 orders of magnitude in the running time of the samples in our
planned graphs. For this reason we have to change the runs-per-sample value
even among samples that go to the same graph. We tried to keep the time
it takes to run one sample in the scale of seconds but less than 10 seconds to



keep the time required to run all the tests humane. As the runs-per-sample
value varies inside a graph we have to scale the result times according to the
runs-per-sample value.

In our tests we vary the graph size (number of vertices) and its density
(edges per vertices squared). We run each test sample fifty times and control
with the runs-per-sample that each sample takes more than a second. As
the clock ()-function will overflow approximately every 72 minutes we check
with each sample if that has happened and run the sample again if it has.
After a sample run we discard the obviously erroneous values based on how
much they differ from the median of the samples. These samples are rerun.
This may happen when some other program interferes too much causing extra
cache misses. We plot the average value of the samples in a graph and write
down several key figures including the mean, variance, standard error and
confidence interval.

We study the influence of graph size using ten different sizes ranging
from 30 to 3500 vertices on three different densities 5%, 40% and 75%. We
study the effect of density using ten different values from 5% to 95% on
three different graph sizes 50, 400 and 750. The slowness of generating dense
graphs with SGB is one of the factors that limits our graph sizes.

2.7 Results

We use three graphs to show the effect of graph size, one for each tested
density. Each graph has 10 result values per implementation.

Similarly we use three graphs to show the effect of graph density, one for
each tested size. Each graph has 10 result values per implementation.

We take 50 samples of each factor combination. The statistical signif-
icance of the results is ensured by testing that the confidence interval of
each result falls within £2.5% of the mean value. Samples that are clearly
erroneous are discarded automatically during testing. Samples that differ
more than 20 % from the sample median at any time during a test run are
discarded since they have been disturbed by other processes.

3 Experiments

3.1 Varying Graph Size

In this experiment we experimented how graph size affects the performance
of DFS. We did the experiments with three graph densities (d) 5%, 40% and
75%. The number of vertices was linearly raised from 50 to 3500 vertices in



the first figure and from 50 to 1000 in the last two figures. The number of
edges can be counted from equation (1).

|E] = d|V]? (1)

The results are shown in figures 3, 4 and 5 with each having a constant
density while increasing the number of vertices.

The computational complexity of the DFS algorithm follows from the
graph implementation. Adjacency matrix implementations have |V|* com-
plexity and adjacency list implementations have |V||E| complexity.

After this we will refer to the different tested implementations as follows:

e adjmat — adjacency integer-matrix
e adjbitmat = adjacency bit-matrix
e adjlistl — adjacency list implementation 1

e adjlist2 — adjacency list implementation 2

In Figure 1 adjlist2 performs best and its performance is almost linear.
Adjlist1 performance follows closely with adjlist2 performance but starts to
lag behind on 1500 vertices and from just over 3000 vertices on its perfor-
mance lags behind some more when compared to adjlist2. With 3500 vertices
adjlist1’s performance is about a third from adjlist2.

The performance of adjmat and adjbitmat lags behind much quicker than
adjlist] when compered to the adjlist2 performance. Their performance
curve resembles a parabola. Adjbitmat performs a little better than adjmat.
With 2700 vertices their performance is about a tenth of adjlist1 performance
as well as with 3500 vertices.

In Figure 2 adjlist2 performs best but takes a slight notch at about 500
vertices. Adjlist] performance starts to lag behind at about 350 vertices and
ends up at 2/3 performance with 1000 vertices. The performance of adjmat
and adjbitmat are very close to each other and are left behind in performance
ending up in 1/4 of the performance of adjlist2. Adjmat wins the race with
adjbitmat by a very small margin.

In Figure 3 adjlist2 performs best once again with near linear perfor-
mance. [t takes a notch at about 350 vertices. Adjlist1 starts to leave
behind at 250 vertices and takes a hit at 600 vertices. It ends up last in this
race with 1/3 of adjlist2 performance.

Adjmat and adjbitmat perform similarly following a parabola. They over-
come adjlist! at 500 vertices and end up with 2/5 of adjlist2 performance.
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3.2 Varying Graph Density

In this experiment the purpose was to see how graph density, i.e. how many

edges are there per vertex, affects performance on different graph layouts and

to compare the different layouts agains each other in a meaningful way.
Factor combinations:

Number of vertices: |V| = 50,400,750

Density: d = 0.05 4+ 0.1N, where 0 < N < 9.
The number of edges can be calculated by equation (1).

The computational complexity is the same as in section 3.1.

The results are shown in figures 6, 7 and 8 with each having a constant
number of vertices with increasing density.

All adjacency matrix traversals seem to follow the same pattern of a
downward opening parabola where the worst performance appears to be at
approximately d = 0.5. Both adjmat and adjbitmat follow the same pattern
but adjbitmat constantly lags a little behind adjmat.
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On the other hand, adjacency list traversals show different behaviour.
Just as in the tests in section 3.1, adjlist1 starts showing bad performance in
comparison to adjlist2 as we increase |V|. It even starts losing to the matrix
implementations at d = 0.8 when |V| =400 and at d = 0.7 when |V| = 750.

Graph size 50 vertices

0.3

—t Aldjacency in{egerfmatri;(

---%--- Adjacency bit—-matrix

---%--- Adjacency list (impl. 1)

~£- Adjacency list (impl. 2)
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Figure 6: Density test - 50 vertices

12



Graph size 400 vertices

T T T
—+— Adjacency integer—matrix

-->--- Adjacency bit—-matrix X
--%--- Adjacency list (impl. 1) P S T
& Adjacency list (impl. 2) =7 S

- /X// /,

DFS time (seconds)

B G|

ol &

. o

o
iy
LK =
B
- 2B
(0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Graph density (%)
Figure 7: Density test - 400 vertices
Graph size 750 vertices

T T T
—+— Adjacency integer—matrix
-->--- Adjacency bit—-matrix
--%--- Adjacency list (impl. 1) »
& Adjacency list (impl. 2) e x

DFS time (seconds)

50

40

30

20

10

(0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Graph density (%)

Figure 8: Density test - 750 vertices
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4 Analysis

4.1 Varying Graph Size

In general, there were no huge surprises here although there are some puzzling
results.

First of all the performance of adjmat doesn’t shock in any way. It pretty
much follows the parabolic trend it should be following based on it’s com-
plexity in each of the three graph density cases. On the other hand, the
performance of adjbitmat was both a disappointment and a surprise based
on the results by Black et al. |[1] although they tested breadth-first-search
(BFS) instead of DFS. Our non-optimized implementation may affect this,
but another point of view is that, since we do not perform any “payload op-
erations” during traversal that we probably in real life would, the resulting
inner loop is a tight one. Therefore it would seem that the bit level calcu-
lations done in the adjbitmap are just enough to make the code generally
slower than the adjmat case. Even huge differences in the amount of mem-
ory needed on large graph sizes (10000 vertices = 382 MB vs. 12 MB) don’t
seem to turn the tables as one might expect. One thing to note here is that
in most cases DFS jumps around a lot in memory, and doesn’t process much
successive memory in a row. This raises the probability that earlier loaded
cache lines get trashed while traversing the subgraph.

In figure 1 we can see how adjlist1 takes a slight performance hit when
the graph no longer fits in L2 cache (1500 vertices) and another when the
graph is twice the L2 cache size (3500 vertices).

In figure 2 we can see adjlist] and adjlist2 take a slight performance hit
when the graph is greater than half the L2 cache size (450 vertices).

In figure 3 we can see adjlistl take a slight performance hit when the
graph is greater than half the L2 cache size (350 vertices). It takes another
when the graph is greater that L2 cache size (450 vertices) and continues to
perform worse and worse.

4.2 Varying Graph Density

All of the graph density varying tests show the same common behaviour in
the matrix-based tests. Both with very sparse and very dense graphs perfor-
mance is much higher than with medium density graphs. This would seem
to be caused by the general patterns of traversal in the adjacency matrix. To
clarify, take the two extreme examples: a fully disconnected graph (0% den-
sity) and a fully connected graph (100% density). Considering how the DFS
algorithm traverses these adjacency matrices in memory, it can be seen that
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in the fully disconnected case, the matrix is just scanned through linearly
thus exploiting maximum data locality and avoiding bad cache effects. In
the fully connected case the graph vertices are visited in linear order, hence
memory is again scanned in a very linear fashion. On the other hand, in the
medium density cases, traversal is likely to be more random in memory and
therefore likely to take more time. This reasoning is very much supported by
figures 6, 7 and 8. Just as in size testing, adjbitmat constantly shows worse
performance than adjmat.

The adjlist1 and adjlist2 cases show that the two different layouts perform
almost equally up until the graph size draws near to and exceeds the L2 cache
size. After that adjlist] execution time starts growing 3 4 times as fast as
adjlist2. We used Valgrind [6] and its plugin Cachegrind to see how the cache
hiearchy reacts to the adjacency-list tests. Simple Valgrind runs suggested
that the adjlist] case causes 10-30% more L1 data cache misses than adjlist2.

5 Summary

What we did was test four different graph implementations to experiment
their effect on DFS efficiency. We had two adjacency matrix implementa-
tions and two adjacency list implementations. To our surprise our adjacency
bit-matrix implementation didn’t perform better than the integer-matrix im-
plementation even though it fit in a fraction of the memory needed by the
integer-matrix implementation.

We experimented with a common adjacency list implementation adjlist2
where vertices and edges are placed apart. It performed very well on all test
cases and demonstrates how much data presentation and data placement can
influence efficiency.

Our other adjacency list implementation adjlist! in which vertices and
edges are alongside suffered somewhat when the graph data didn’t fit in L2
cache and on bigger and denser graphs it was left behind by the adjacency
matrix implementations.

When we tested the influence of graph density the performance of the
adjacency matrix implementations was best with sparse and again with dense
graphs.

What left us curious was the poor performance of the adjacency bit-
matrix and for future research it would be interesting to try to make it
perform better. Another point of interest would be to test the implementa-
tions with different payloads. Also it might be interesting to draw the graphs
using the memory needed for the graph as the x-axis.
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